Copied to
clipboard

G = C33.31C32order 243 = 35

14th non-split extension by C33 of C32 acting via C32/C3=C3

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C33.31C32, C32.25C33, C32.83- 1+2, C9⋊C94C3, C32⋊C9.9C3, (C3×C9).8C32, (C32×C9).7C3, C3.7(C9○He3), C3.7(C3×3- 1+2), SmallGroup(243,42)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — C33.31C32
C1C3C32C3×C9C32×C9 — C33.31C32
C1C32 — C33.31C32
C1C32 — C33.31C32
C1C32C32 — C33.31C32

Generators and relations for C33.31C32
 G = < a,b,c,d,e | a3=b3=d3=1, c3=b, e3=a, ab=ba, dcd-1=ac=ca, ad=da, ae=ea, ece-1=bc=cb, bd=db, be=eb, de=ed >

Subgroups: 99 in 57 conjugacy classes, 36 normal (6 characteristic)
C1, C3, C3, C3, C9, C32, C32, C32, C3×C9, C3×C9, C33, C32⋊C9, C9⋊C9, C32×C9, C33.31C32
Quotients: C1, C3, C32, 3- 1+2, C33, C3×3- 1+2, C9○He3, C33.31C32

Smallest permutation representation of C33.31C32
On 81 points
Generators in S81
(1 80 67)(2 81 68)(3 73 69)(4 74 70)(5 75 71)(6 76 72)(7 77 64)(8 78 65)(9 79 66)(10 53 56)(11 54 57)(12 46 58)(13 47 59)(14 48 60)(15 49 61)(16 50 62)(17 51 63)(18 52 55)(19 32 37)(20 33 38)(21 34 39)(22 35 40)(23 36 41)(24 28 42)(25 29 43)(26 30 44)(27 31 45)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 7 4)(2 65 75)(3 79 72)(5 68 78)(6 73 66)(8 71 81)(9 76 69)(10 16 13)(11 63 48)(12 52 61)(14 57 51)(15 46 55)(17 60 54)(18 49 58)(19 29 40)(20 26 23)(21 45 28)(22 32 43)(24 39 31)(25 35 37)(27 42 34)(30 36 33)(38 44 41)(47 53 50)(56 62 59)(64 70 67)(74 80 77)
(1 56 36 80 10 41 67 53 23)(2 63 31 81 17 45 68 51 27)(3 61 35 73 15 40 69 49 22)(4 59 30 74 13 44 70 47 26)(5 57 34 75 11 39 71 54 21)(6 55 29 76 18 43 72 52 25)(7 62 33 77 16 38 64 50 20)(8 60 28 78 14 42 65 48 24)(9 58 32 79 12 37 66 46 19)

G:=sub<Sym(81)| (1,80,67)(2,81,68)(3,73,69)(4,74,70)(5,75,71)(6,76,72)(7,77,64)(8,78,65)(9,79,66)(10,53,56)(11,54,57)(12,46,58)(13,47,59)(14,48,60)(15,49,61)(16,50,62)(17,51,63)(18,52,55)(19,32,37)(20,33,38)(21,34,39)(22,35,40)(23,36,41)(24,28,42)(25,29,43)(26,30,44)(27,31,45), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,7,4)(2,65,75)(3,79,72)(5,68,78)(6,73,66)(8,71,81)(9,76,69)(10,16,13)(11,63,48)(12,52,61)(14,57,51)(15,46,55)(17,60,54)(18,49,58)(19,29,40)(20,26,23)(21,45,28)(22,32,43)(24,39,31)(25,35,37)(27,42,34)(30,36,33)(38,44,41)(47,53,50)(56,62,59)(64,70,67)(74,80,77), (1,56,36,80,10,41,67,53,23)(2,63,31,81,17,45,68,51,27)(3,61,35,73,15,40,69,49,22)(4,59,30,74,13,44,70,47,26)(5,57,34,75,11,39,71,54,21)(6,55,29,76,18,43,72,52,25)(7,62,33,77,16,38,64,50,20)(8,60,28,78,14,42,65,48,24)(9,58,32,79,12,37,66,46,19)>;

G:=Group( (1,80,67)(2,81,68)(3,73,69)(4,74,70)(5,75,71)(6,76,72)(7,77,64)(8,78,65)(9,79,66)(10,53,56)(11,54,57)(12,46,58)(13,47,59)(14,48,60)(15,49,61)(16,50,62)(17,51,63)(18,52,55)(19,32,37)(20,33,38)(21,34,39)(22,35,40)(23,36,41)(24,28,42)(25,29,43)(26,30,44)(27,31,45), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,7,4)(2,65,75)(3,79,72)(5,68,78)(6,73,66)(8,71,81)(9,76,69)(10,16,13)(11,63,48)(12,52,61)(14,57,51)(15,46,55)(17,60,54)(18,49,58)(19,29,40)(20,26,23)(21,45,28)(22,32,43)(24,39,31)(25,35,37)(27,42,34)(30,36,33)(38,44,41)(47,53,50)(56,62,59)(64,70,67)(74,80,77), (1,56,36,80,10,41,67,53,23)(2,63,31,81,17,45,68,51,27)(3,61,35,73,15,40,69,49,22)(4,59,30,74,13,44,70,47,26)(5,57,34,75,11,39,71,54,21)(6,55,29,76,18,43,72,52,25)(7,62,33,77,16,38,64,50,20)(8,60,28,78,14,42,65,48,24)(9,58,32,79,12,37,66,46,19) );

G=PermutationGroup([[(1,80,67),(2,81,68),(3,73,69),(4,74,70),(5,75,71),(6,76,72),(7,77,64),(8,78,65),(9,79,66),(10,53,56),(11,54,57),(12,46,58),(13,47,59),(14,48,60),(15,49,61),(16,50,62),(17,51,63),(18,52,55),(19,32,37),(20,33,38),(21,34,39),(22,35,40),(23,36,41),(24,28,42),(25,29,43),(26,30,44),(27,31,45)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,7,4),(2,65,75),(3,79,72),(5,68,78),(6,73,66),(8,71,81),(9,76,69),(10,16,13),(11,63,48),(12,52,61),(14,57,51),(15,46,55),(17,60,54),(18,49,58),(19,29,40),(20,26,23),(21,45,28),(22,32,43),(24,39,31),(25,35,37),(27,42,34),(30,36,33),(38,44,41),(47,53,50),(56,62,59),(64,70,67),(74,80,77)], [(1,56,36,80,10,41,67,53,23),(2,63,31,81,17,45,68,51,27),(3,61,35,73,15,40,69,49,22),(4,59,30,74,13,44,70,47,26),(5,57,34,75,11,39,71,54,21),(6,55,29,76,18,43,72,52,25),(7,62,33,77,16,38,64,50,20),(8,60,28,78,14,42,65,48,24),(9,58,32,79,12,37,66,46,19)]])

C33.31C32 is a maximal subgroup of   C9⋊C92S3

51 conjugacy classes

class 1 3A···3H3I···3N9A···9R9S···9AJ
order13···33···39···99···9
size11···13···33···39···9

51 irreducible representations

dim111133
type+
imageC1C3C3C33- 1+2C9○He3
kernelC33.31C32C32⋊C9C9⋊C9C32×C9C32C3
# reps16182618

Matrix representation of C33.31C32 in GL6(𝔽19)

1100000
0110000
0011000
0001100
0000110
0000011
,
700000
070000
007000
000100
000010
000001
,
160000
0181000
1180000
0001110
0000181
0000180
,
1100000
1270000
1101000
000100
00013110
000407
,
1700000
1750000
3016000
000500
000050
000005

G:=sub<GL(6,GF(19))| [11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,1,0,0,0,6,18,18,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,11,18,18,0,0,0,0,1,0],[11,12,11,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,13,4,0,0,0,0,11,0,0,0,0,0,0,7],[17,17,3,0,0,0,0,5,0,0,0,0,0,0,16,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C33.31C32 in GAP, Magma, Sage, TeX

C_3^3._{31}C_3^2
% in TeX

G:=Group("C3^3.31C3^2");
// GroupNames label

G:=SmallGroup(243,42);
// by ID

G=gap.SmallGroup(243,42);
# by ID

G:=PCGroup([5,-3,3,3,-3,3,405,301,1352,57]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=d^3=1,c^3=b,e^3=a,a*b=b*a,d*c*d^-1=a*c=c*a,a*d=d*a,a*e=e*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,d*e=e*d>;
// generators/relations

׿
×
𝔽